Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Sci Rep ; 12(1): 19845, 2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36400806

RESUMEN

Peru was the first country where pfhrp2 and pfhrp3 gene deletions were detected despite the fact that rapid diagnostics tests are not commonly used for confirmatory malaria diagnosis. This context provides a unique scenario to study the dynamics of pfhrp2 and pfhrp3 gene deletions without apparent RDTs selection pressure. In this study we characterized the presence of pfhrp2 and pfhrp3 genes on 325 P. falciparum samples collected in Iquitos and surrounding communities between 2011 and 2018 in order to understand the dynamics of gene deletion prevalence, potential associations with clinical symptomatology and parasite genetic background. P. falciparum presence was confirmed by microscopy and PCR of 18 s rRNA, pfmsp1 and pfmsp2. Gene deletions were assessed by amplification of exon1 and exon2 of pfhrp2 and pfhrp3 using gene specific PCRs. Confirmation of absence of HRP2 expression was assessed by ELISA of HRP2 and pLDH. Genotyping of 254 samples were performed using a panel of seven neutral microsatellite markers. Overall, pfhrp2 and pfhrp3 dual gene deletions were detected in 67% (217/324) parasite samples. Concordance between pfhrp2 deletion and negligible HRP2 protein levels was observed (Cohen's Kappa = 0.842). Prevalence of gene deletions was heterogeneous across study sites (adjusted p < 0.005) but there is an overall tendency towards increase through time in the prevalence of dual pfhrp2/3-deleted parasites between 2011 (14.3%) and 2016 (88.39%) stabilizing around 65% in 2018. Dual deletions increase was associated with dominance of a single new parasite haplotype (H8) which rapidly spread to all study sites during the 8 study years. Interestingly, participants infected with dual pfhrp2/3-deleted parasites had a significantly lower parasitemias than those without gene deletions in this cohort. Our study showed the increase of pfhrp2/3 deletions in the absence of RDTs pressure and a clonal replacement of circulating lines in the Peruvian Amazon basin. These results suggest that other factors linked to the pfhrp2/3 deletion provide a selective advantage over non-deleted strains and highlight the need for additional studies and continuing surveillance.


Asunto(s)
Malaria Falciparum , Plasmodium falciparum , Humanos , Plasmodium falciparum/genética , Perú/epidemiología , Histidina/genética , Eliminación de Gen , Malaria Falciparum/parasitología
2.
Sci Rep ; 12(1): 16474, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36182962

RESUMEN

Malaria is a major health problem in Peru despite substantial progress achieved by the ongoing malaria elimination program. This study explored the population genetics of 63 Plasmodium falciparum and 170 P. vivax cases collected in the Peruvian Amazon Basin between 2015 and 2019. Microscopy and PCR were used for malaria detection and positive samples were genotyped at neutral and drug resistance-associated regions. The P. falciparum population exhibited a low nucleotide diversity (π = 0.02) whereas the P. vivax population presented a higher genetic diversity (π = 0.34). All P. falciparum samples (n = 63) carried chloroquine (CQ) resistant mutations on Pfcrt. Most P. falciparum samples (53 out of 54) carried sulfadoxine (SD) resistant mutations on Pfdhfr and Pfdhps. No evidence was found of artemisinin resistance mutations on kelch13. Population structure showed that a single cluster accounted for 93.4% of the P. falciparum samples whereas three clusters were found for P. vivax. Our study shows a low genetic diversity for both species with significant differences in genetic sub-structuring. The high prevalence of CQ-resistance mutations could be a result of indirect selection pressures driven by the P. vivax treatment scheme. These results could be useful for public health authorities to safeguard the progress that Peru has achieved towards malaria elimination.


Asunto(s)
Antimaláricos , Artemisininas , Malaria Falciparum , Malaria Vivax , Malaria , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Artemisininas/uso terapéutico , Cloroquina/farmacología , Cloroquina/uso terapéutico , Resistencia a Medicamentos/genética , Humanos , Malaria/tratamiento farmacológico , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/epidemiología , Malaria Vivax/tratamiento farmacológico , Malaria Vivax/epidemiología , Nucleótidos/uso terapéutico , Perú/epidemiología , Plasmodium falciparum/genética , Plasmodium vivax/genética , Proteínas Protozoarias/genética , Sulfadoxina/uso terapéutico
3.
PLoS One ; 16(10): e0258722, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34695122

RESUMEN

Malaria elimination efforts in Peru have dramatically reduced the incidence of cases in the Amazon Basin. To achieve the elimination, the detection of asymptomatic and submicroscopic carriers becomes a priority. Therefore, efforts should focus on tests sensitive enough to detect low-density parasitemia, deployable to resource-limited areas and affordable for large screening purposes. In this study, we assessed the performance of the Malachite-Green LAMP (MG-LAMP) using heat-treated DNA extraction (Boil & Spin; B&S MG-LAMP) on 283 whole blood samples collected from 9 different sites in Loreto, Peru and compared its performance to expert and field microscopy. A real-time PCR assay was used to quantify the parasite density. In addition, we explored a modified version of the B&S MG-LAMP for detection of submicroscopic infection in 500 samples and compared the turnaround time and cost of the MG-LAMP with microscopy. Compared to expert microscopy, the genus B&S MG-LAMP had a sensitivity of 99.4% (95%CI: 96.9%- 100%) and specificity of 97.1% (95%CI: 91.9%- 99.4%). The P. vivax specific B&S MG-LAMP had a sensitivity of 99.4% (96.6%- 100%) and specificity of 99.2% (95.5%- 100%) and the P. falciparum assay had a sensitivity of 100% (95%CI: 78.2%- 100%) and specificity of 99.3% (95%CI: 97.3%- 99.8%). The modified genus B&S MG-LAMP assay detected eight submicroscopic malaria cases (1.6%) which the species-specific assays did not identify. The turnaround time of B&S MG-LAMP was faster than expert microscopy with as many as 60 samples being processed per day by field technicians with limited training and utilizing a simple heat-block. The modified B&S MG-LAMP offers a simple and sensitive molecular test of choice for the detection of submicroscopic infections that can be used for mass screening in resources limited facilities in endemic settings nearing elimination and where a deployable test is required.


Asunto(s)
Malaria Falciparum/diagnóstico , Microscopía/métodos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Plasmodium falciparum/aislamiento & purificación , Colorantes de Rosanilina/química , Humanos , Malaria Falciparum/epidemiología , Malaria Falciparum/parasitología , Perú/epidemiología
4.
Malar J ; 19(1): 450, 2020 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-33276776

RESUMEN

BACKGROUND: The high incidence of Plasmodium vivax infections associated with clinical severity and the emergence of chloroquine (CQ) resistance has posed a challenge to control efforts aimed at eliminating this disease. Despite conflicting evidence regarding the role of mutations of P. vivax multidrug resistance 1 gene (pvmdr1) in drug resistance, this gene can be a tool for molecular surveillance due to its variability and spatial patterns. METHODS: Blood samples were collected from studies conducted between 2006 and 2015 in the Northern and Southern Amazon Basin and the North Coast of Peru. Thick and thin blood smears were prepared for malaria diagnosis by microscopy and PCR was performed for detection of P. vivax monoinfections. The pvmdr1 gene was subsequently sequenced and the genetic data was used for haplotype and diversity analysis. RESULTS: A total of 550 positive P. vivax samples were sequenced; 445 from the Northern Amazon Basin, 48 from the Southern Amazon Basin and 57 from the North Coast. Eight non-synonymous mutations and three synonymous mutations were analysed in 4,395 bp of pvmdr1. Amino acid changes at positions 976F and 1076L were detected in the Northern Amazon Basin (12.8%) and the Southern Amazon Basin (4.2%) with fluctuations in the prevalence of both mutations in the Northern Amazon Basin during the course of the study that seemed to correspond with a malaria control programme implemented in the region. A total of 13 pvmdr1 haplotypes with non-synonymous mutations were estimated in Peru and an overall nucleotide diversity of π = 0.00054. The Northern Amazon Basin was the most diverse region (π = 0.00055) followed by the Southern Amazon and the North Coast (π = 0.00035 and π = 0.00014, respectively). CONCLUSION: This study showed a high variability in the frequencies of the 976F and 1076L polymorphisms in the Northern Amazon Basin between 2006 and 2015. The low and heterogeneous diversity of pvmdr1 found in this study underscores the need for additional research that can elucidate the role of this gene on P. vivax drug resistance as well as in vitro and clinical data that can clarify the extend of CQ resistance in Peru.


Asunto(s)
Resistencia a los Insecticidas/genética , Malaria Vivax , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Plasmodium vivax/genética , Proteínas Protozoarias/genética , Antimaláricos/farmacología , Estudios Transversales , Humanos , Malaria Vivax/epidemiología , Malaria Vivax/parasitología , Epidemiología Molecular , Plasmodium vivax/efectos de los fármacos , Polimorfismo de Nucleótido Simple/genética , Prevalencia
5.
PLoS One ; 15(6): e0234263, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32525900

RESUMEN

The current context of malaria elimination requires urgent development and implementation of highly sensitive and specific methods for prompt detection and treatment of malaria parasites. Such methods should overcome current delays in diagnosis, allow the detection of low-density infections and address the difficulties in accessing remote endemic communities. In this study, we assessed the performance of the RealAmp and malachite-green loop mediated isothermal amplification (MG-LAMP) methodologies, using microscopy and conventional nested-PCR as reference techniques. Both LAMP techniques were performed for Plasmodium genus, P. falciparum, and P. vivax identification using 136 whole blood samples collected from three communities located in the Peruvian Amazon basin. Turnaround time and costs of performing the LAMP assays were estimated and compared to that of microscopy and nested-PCR. Using nested-PCR as reference standard, we calculated the sensitivity, specificity and 95% confidence interval (CI) for all methods. RealAmp had a sensitivity of 92% (95% CI: 85-96.5%) and specificity of 100% (95% CI: 89.1-100%) for species detection; sensitivity and specificity of MG-LAMP were 94% (95% CI: 87.5-97.8%) and 100% (89.1-100%), respectively. Whereas microscopy showed 88.1% sensitivity (95% CI: 80.2-93.7%) and 100% specificity (95%: 89.1-100%). The turnaround time and costs of performing the LAMP assays were lower compared to those associated with nested-PCR but higher than those associated with microscopy. The two LAMP assays were shown to be more sensitive and simple to implement than microscopy. Both LAMP methodologies could be used as large-scale screening tests, but the MG-LAMP assay uses a simple, portable heat-block while the RealAmp requires a RealAmp machine or a real-time PCR machine. This makes the MG-LAMP an appropriate choice for malaria surveillance studies in endemic sites. Use of LAMP tests in active case detection of Plasmodium parasites could help to detect positive malaria cases early.


Asunto(s)
Técnicas de Amplificación de Ácido Nucleico/métodos , Compuestos Organometálicos/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/aislamiento & purificación , Plasmodium vivax/genética , Plasmodium vivax/aislamiento & purificación , Temperatura , Adulto , Femenino , Humanos , Límite de Detección , Malaria Falciparum/diagnóstico , Malaria Vivax/diagnóstico , Masculino , Plasmodium falciparum/fisiología , Plasmodium vivax/fisiología , Factores de Tiempo
6.
PLoS One ; 9(11): e109654, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25405724

RESUMEN

BACKGROUND: Controlled human malaria infection (CHMI) studies which recapitulate mosquito-borne infection are a critical tool to identify protective vaccine and drug candidates for advancement to field trials. In partnership with the Walter Reed Army Institute of Research, the CHMI model was established at the Seattle Biomedical Research Institute's Malaria Clinical Trials Center (MCTC). Activities and reagents at both centers were aligned to ensure comparability and continued safety of the model. To demonstrate successful implementation, CHMI was performed in six healthy malaria-naïve volunteers. METHODS: All volunteers received NF54 strain Plasmodium falciparum by the bite of five infected Anopheles stephensi mosquitoes under controlled conditions and were monitored for signs and symptoms of malaria and for parasitemia by peripheral blood smear. Subjects were treated upon diagnosis with chloroquine by directly observed therapy. Immunological (T cell and antibody) and molecular diagnostic (real-time quantitative reverse transcriptase polymerase chain reaction [qRT-PCR]) assessments were also performed. RESULTS: All six volunteers developed patent parasitemia and clinical malaria. No serious adverse events occurred during the study period or for six months post-infection. The mean prepatent period was 11.2 days (range 9-14 days), and geometric mean parasitemia upon diagnosis was 10.8 parasites/µL (range 2-69) by microscopy. qRT-PCR detected parasites an average of 3.7 days (range 2-4 days) earlier than blood smears. All volunteers developed antibodies to the blood-stage antigen merozoite surface protein 1 (MSP-1), which persisted up to six months. Humoral and cellular responses to pre-erythrocytic antigens circumsporozoite protein (CSP) and liver-stage antigen 1 (LSA-1) were limited. CONCLUSION: The CHMI model was safe, well tolerated and characterized by consistent prepatent periods, pre-symptomatic diagnosis in 3/6 subjects and adverse event profiles as reported at established centers. The MCTC can now evaluate candidates in the increasingly diverse vaccine and drug pipeline using the CHMI model. TRIAL REGISTRATION: ClinicalTrials.gov NCT01058226.


Asunto(s)
Experimentación Humana , Malaria Falciparum/diagnóstico , Plasmodium falciparum/patogenicidad , Esporozoítos , Adulto , Animales , Anopheles/parasitología , Anopheles/fisiología , Mordeduras y Picaduras/parasitología , Femenino , Humanos , Malaria Falciparum/complicaciones , Malaria Falciparum/etiología , Malaria Falciparum/inmunología , Masculino , Plasmodium falciparum/fisiología
7.
Malar J ; 13: 67, 2014 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-24568141

RESUMEN

BACKGROUND: Plasmodium vivax is a predominant species of malaria in parts of South America and there is increasing resistance to drugs to treat infections by P. vivax. The existence of latent hypnozoites further complicates the ability to classify recurrent infections as treatment failures due to relapse, recrudescence of hyponozoites or re-infections. Antigen loci are putatively under natural selection and may not be an optimal molecular marker to define parasite haplotypes in paired samples. Putatively neutral microsatellite loci, however, offer an assessment of neutral haplotypes. The objective here was to assess the utility of neutral microsatellite loci to reconcile cases of recurrent parasitaemia in Amazonian P. vivax populations in Peru. METHODS: Patient blood samples were collected from three locations in or around Iquitos in the Peruvian Amazon. Five putatively neutral microsatellite loci were characterized from 445 samples to ascertain the within and amongst population variation. A total of 30 day 0 and day of recurrent parasitaemia samples were characterized at microsatellite loci and five polymorphic antigen loci for haplotype classification. RESULTS: The genetic diversity at microsatellite loci was consistent with neutral levels of variation measured in other South American P. vivax populations. Results between antigen and microsatellite loci for the 30 day 0 and day of recurrent parasitaemia samples were the same for 80% of the pairs. The majority of non-concordant results were the result of differing alleles at microsatellite loci. This analysis estimates that 90% of the paired samples with the same microsatellite haplotype are unlikely to be due to a new infection. CONCLUSIONS: A population-level approach was used to yield a better estimate of the probability of a new infection versus relapse or recrudescence of homologous hypnozoites; hypnozoite activation was common for this cohort. Population studies are critical with the evaluation of genetic markers to assess P. vivax biology and epidemiology. The additional demonstration of microsatellite loci as neutral markers capable of distinguishing the origin of the recurrent parasites (new infection or originating from the patient) lends support to their use in assessment of treatment outcomes.


Asunto(s)
Variación Genética , Malaria Vivax/epidemiología , Malaria Vivax/parasitología , Parasitemia/epidemiología , Parasitemia/parasitología , Plasmodium vivax/clasificación , Plasmodium vivax/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , ADN Protozoario/genética , Femenino , Haplotipos , Humanos , Lactante , Masculino , Repeticiones de Microsatélite , Persona de Mediana Edad , Perú/epidemiología , Recurrencia , Adulto Joven
8.
Clin Infect Dis ; 54(2): 232-9, 2012 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-22052893

RESUMEN

BACKGROUND: We conducted a randomized, placebo-controlled, double-blind trial to establish the efficacy of atovaquone-proguanil to prevent malaria with the goal of simulating weekly dosing in a human Plasmodium falciparum challenge model. METHODS: Thirty volunteers randomly received 1 of the following dose regimens: (1) 250 milligrams of atovaquone and 100 milligrams of proguanil (250/100 milligrams) 1 day prior to infectious mosquito challenge (day -1), (2) 250/100 milligrams on day 4 after challenge, (3) 250/100 milligrams on day -7, (4) 500 milligrams of atovaquone and 200 milligrams of proguanil (500/200 milligrams) on day -7 or, (5) 1000 milligrams of atovaquone and 400 milligrams of proguanil (1000/400 milligrams) on day -7. All regimens included matching placebo such that all volunteers received identical pill numbers. Six volunteers served as open-label infectivity controls. Volunteers underwent mosquito sporozoite challenge with P. falciparum 3D7 strain. Follow-up consisted of serial microscopy and close clinical monitoring for 90 days. RESULTS: Six of 6 infectivity controls developed parasitemia as expected. Two of 5 evaluable volunteers receiving 250/100 milligrams 7 days prior to challenge and 1 of 6 volunteers receiving 1000/400 milligrams 7 days prior to challenge were microscopically diagnosed with malaria. All other volunteers were protected. Atovaquone exposure (area under the curve) during liver stage development was low in 2 of 3 volunteers with prophylactic failure (423 and 199 ng/mL × days compared with a mean for protected volunteers of 1903 ng/mL × days), as was peak concentration (165 and 81 ng/mL compared with a mean of 594 ng/mL in volunteers with prophylactic success). Elimination half-life was short in volunteers with prophylactic failure (2.4, 2.0, and 3.3 days compared with a mean of 4.1 days in volunteers with prophylactic success). CONCLUSIONS: Single-dose atovaquone-proguanil provides effective malaria chemoprophylaxis against P. falciparum challenge at dosing intervals supportive of weekly dosing. Postexposure prophylaxis 4 days after challenge was 100% effective.


Asunto(s)
Antimaláricos/administración & dosificación , Atovacuona/administración & dosificación , Malaria Falciparum/prevención & control , Plasmodium falciparum/efectos de los fármacos , Proguanil/administración & dosificación , Adulto , Antimaláricos/efectos adversos , Antimaláricos/farmacocinética , Área Bajo la Curva , Atovacuona/efectos adversos , Atovacuona/farmacocinética , Quimioprevención/métodos , Estudios de Cohortes , Combinación de Medicamentos , Femenino , Humanos , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/metabolismo , Masculino , Persona de Mediana Edad , Parasitemia/tratamiento farmacológico , Parasitemia/metabolismo , Parasitemia/prevención & control , Placebos , Proguanil/efectos adversos , Proguanil/farmacocinética , Esporozoítos/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...